3.486 \(\int \frac{(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)+C \cos ^2(c+d x))}{\sqrt{\cos (c+d x)}} \, dx\)

Optimal. Leaf size=181 \[ \frac{a^{3/2} (24 A+14 B+11 C) \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{8 d}+\frac{a^2 (24 A+30 B+19 C) \sin (c+d x) \sqrt{\cos (c+d x)}}{24 d \sqrt{a \cos (c+d x)+a}}+\frac{a (2 B+C) \sin (c+d x) \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}{4 d}+\frac{C \sin (c+d x) \sqrt{\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}{3 d} \]

[Out]

(a^(3/2)*(24*A + 14*B + 11*C)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(8*d) + (a^2*(24*A + 30
*B + 19*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(24*d*Sqrt[a + a*Cos[c + d*x]]) + (a*(2*B + C)*Sqrt[Cos[c + d*x]]*
Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(4*d) + (C*Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^(3/2)*Sin[c + d*x])/
(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.565572, antiderivative size = 181, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 45, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {3045, 2976, 2981, 2774, 216} \[ \frac{a^{3/2} (24 A+14 B+11 C) \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{8 d}+\frac{a^2 (24 A+30 B+19 C) \sin (c+d x) \sqrt{\cos (c+d x)}}{24 d \sqrt{a \cos (c+d x)+a}}+\frac{a (2 B+C) \sin (c+d x) \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}{4 d}+\frac{C \sin (c+d x) \sqrt{\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[((a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Sqrt[Cos[c + d*x]],x]

[Out]

(a^(3/2)*(24*A + 14*B + 11*C)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(8*d) + (a^2*(24*A + 30
*B + 19*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(24*d*Sqrt[a + a*Cos[c + d*x]]) + (a*(2*B + C)*Sqrt[Cos[c + d*x]]*
Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(4*d) + (C*Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^(3/2)*Sin[c + d*x])/
(3*d)

Rule 3045

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*
sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e +
f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(m + n + 2)), x] + Dist[1/(b*d*(m + n + 2)), Int[(a + b*Sin[e + f*x
])^m*(c + d*Sin[e + f*x])^n*Simp[A*b*d*(m + n + 2) + C*(a*c*m + b*d*(n + 1)) + (C*(a*d*m - b*c*(m + 1)) + b*B*
d*(m + n + 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0] &&
 EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-1)] && NeQ[m + n + 2, 0]

Rule 2976

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])
^(n + 1))/(d*f*(m + n + 1)), x] + Dist[1/(d*(m + n + 1)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x]
)^n*Simp[a*A*d*(m + n + 1) + B*(a*c*(m - 1) + b*d*(n + 1)) + (A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))*S
in[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&
NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 2981

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-2*b*B*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(2*n + 3)*Sqr
t[a + b*Sin[e + f*x]]), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)), Int[Sqrt[a + b*
Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]

Rule 2774

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{(a+a \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\sqrt{\cos (c+d x)}} \, dx &=\frac{C \sqrt{\cos (c+d x)} (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{3 d}+\frac{\int \frac{(a+a \cos (c+d x))^{3/2} \left (\frac{1}{2} a (6 A+C)+\frac{3}{2} a (2 B+C) \cos (c+d x)\right )}{\sqrt{\cos (c+d x)}} \, dx}{3 a}\\ &=\frac{a (2 B+C) \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{4 d}+\frac{C \sqrt{\cos (c+d x)} (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{3 d}+\frac{\int \frac{\sqrt{a+a \cos (c+d x)} \left (\frac{1}{4} a^2 (24 A+6 B+7 C)+\frac{1}{4} a^2 (24 A+30 B+19 C) \cos (c+d x)\right )}{\sqrt{\cos (c+d x)}} \, dx}{6 a}\\ &=\frac{a^2 (24 A+30 B+19 C) \sqrt{\cos (c+d x)} \sin (c+d x)}{24 d \sqrt{a+a \cos (c+d x)}}+\frac{a (2 B+C) \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{4 d}+\frac{C \sqrt{\cos (c+d x)} (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{3 d}+\frac{1}{16} (a (24 A+14 B+11 C)) \int \frac{\sqrt{a+a \cos (c+d x)}}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{a^2 (24 A+30 B+19 C) \sqrt{\cos (c+d x)} \sin (c+d x)}{24 d \sqrt{a+a \cos (c+d x)}}+\frac{a (2 B+C) \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{4 d}+\frac{C \sqrt{\cos (c+d x)} (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{3 d}-\frac{(a (24 A+14 B+11 C)) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^2}{a}}} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{8 d}\\ &=\frac{a^{3/2} (24 A+14 B+11 C) \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{8 d}+\frac{a^2 (24 A+30 B+19 C) \sqrt{\cos (c+d x)} \sin (c+d x)}{24 d \sqrt{a+a \cos (c+d x)}}+\frac{a (2 B+C) \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{4 d}+\frac{C \sqrt{\cos (c+d x)} (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{3 d}\\ \end{align*}

Mathematica [A]  time = 0.73166, size = 125, normalized size = 0.69 \[ \frac{a \sec \left (\frac{1}{2} (c+d x)\right ) \sqrt{a (\cos (c+d x)+1)} \left (3 \sqrt{2} (24 A+14 B+11 C) \sin ^{-1}\left (\sqrt{2} \sin \left (\frac{1}{2} (c+d x)\right )\right )+2 \sin \left (\frac{1}{2} (c+d x)\right ) \sqrt{\cos (c+d x)} (24 A+2 (6 B+11 C) \cos (c+d x)+42 B+4 C \cos (2 (c+d x))+37 C)\right )}{48 d} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Sqrt[Cos[c + d*x]],x]

[Out]

(a*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*(3*Sqrt[2]*(24*A + 14*B + 11*C)*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]
] + 2*Sqrt[Cos[c + d*x]]*(24*A + 42*B + 37*C + 2*(6*B + 11*C)*Cos[c + d*x] + 4*C*Cos[2*(c + d*x)])*Sin[(c + d*
x)/2]))/(48*d)

________________________________________________________________________________________

Maple [B]  time = 0.117, size = 515, normalized size = 2.9 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2),x)

[Out]

1/24/d*a*(-1+cos(d*x+c))^2*(24*A*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(5/2)+48*A*sin(d*x+c)*cos
(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(5/2)+12*B*cos(d*x+c)^3*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)+24*A*
sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(5/2)+54*B*cos(d*x+c)^2*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)+8*
C*sin(d*x+c)*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+42*B*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+
c)))^(3/2)+22*C*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+33*C*sin(d*x+c)*cos(d*x+c)^2*(cos(d*
x+c)/(1+cos(d*x+c)))^(1/2)+72*A*cos(d*x+c)^2*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))+4
2*B*cos(d*x+c)^2*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))+33*C*cos(d*x+c)^2*arctan(sin(
d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c)))*(a*(1+cos(d*x+c)))^(1/2)/sin(d*x+c)^4/cos(d*x+c)^(1/2)/(
cos(d*x+c)/(1+cos(d*x+c)))^(3/2)

________________________________________________________________________________________

Maxima [B]  time = 3.38719, size = 5162, normalized size = 28.52 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

1/96*(24*(2*(a*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - (a*cos(d*x + c) - a)*si
n(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x
 + 2*c) + 1)^(1/4)*sqrt(a) + 3*(a*arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^
(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2(si
n(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1
/4)*(cos(d*x + c)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(
2*d*x + 2*c), cos(2*d*x + 2*c) + 1))) + 1) - a*arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x
 + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1
/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x +
 2*c) + 1)^(1/4)*(cos(d*x + c)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))) - 1) - a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 +
 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 +
 sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) +
 1) + a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2
*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*
cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1))*sqrt(a))*A + 6*(2*(cos(2*d*x + 2*c)^2 + sin(2*d
*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*((a*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(2*d*x
 + 2*c) + a*sin(2*d*x + 2*c) - (a*cos(2*d*x + 2*c) - 6*a)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))
)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + (a*sin(2*d*x + 2*c)*sin(1/2*arctan2(sin(2*d*x + 2
*c), cos(2*d*x + 2*c))) - a*cos(2*d*x + 2*c) + (a*cos(2*d*x + 2*c) - 6*a)*cos(1/2*arctan2(sin(2*d*x + 2*c), co
s(2*d*x + 2*c))) + 6*a)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqrt(a) + 7*(a*arctan2((cos(
2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d
*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2
*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c
)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(
sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan
2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) + 1) - a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*
x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), co
s(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*
c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arc
tan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*a
rctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) - 1) - a
*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x +
2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) + a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 +
2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 +
sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) -
1))*sqrt(a))*B + (4*(a*cos(3/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(s
in(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))*sin(3*d*x + 3*c) - (a*cos(3*d*x + 3*c) - a)*sin(3/2*arctan2(sin(2/3*
arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)))*(cos
(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 +
 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(3/4)*sqrt(a) + 6*(cos(2/3*arctan2(sin(3*d*x + 3*
c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*
x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*((3*a*sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 11*a*sin(
1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))))*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x
+ 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) - (3*a*cos(2/3*arctan2(sin(3*d*x + 3*c),
cos(3*d*x + 3*c))) + 5*a*cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) - 8*a)*sin(1/2*arctan2(sin(2/3*a
rctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)))*sqrt(
a) + 33*(a*arctan2(-(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c)
, cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/2*arctan2(si
n(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))
*sin(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) - cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*s
in(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d
*x + 3*c))) + 1))), (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c)
, cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/3*arctan2(si
n(3*d*x + 3*c), cos(3*d*x + 3*c)))*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2
/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) + sin(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*s
in(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d
*x + 3*c))) + 1))) + 1) - a*arctan2(-(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2
(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(c
os(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d
*x + 3*c))) + 1))*sin(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) - cos(1/3*arctan2(sin(3*d*x + 3*c), cos
(3*d*x + 3*c)))*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*
x + 3*c), cos(3*d*x + 3*c))) + 1))), (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2
(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(c
os(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*
x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) + sin(1/3*arctan2(sin(3*d*x + 3*c), cos
(3*d*x + 3*c)))*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*
x + 3*c), cos(3*d*x + 3*c))) + 1))) - 1) - a*arctan2((cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 +
 sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)
)) + 1)^(1/4)*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x
+ 3*c), cos(3*d*x + 3*c))) + 1)), (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(si
n(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*cos(1
/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x +
 3*c))) + 1)) + 1) + a*arctan2((cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3
*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*sin(1/2*
arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*
c))) + 1)), (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*
d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*cos(1/2*arctan2(sin(2/3*arc
tan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) - 1))*sq
rt(a))*C)/d

________________________________________________________________________________________

Fricas [A]  time = 4.49186, size = 428, normalized size = 2.36 \begin{align*} \frac{{\left (8 \, C a \cos \left (d x + c\right )^{2} + 2 \,{\left (6 \, B + 11 \, C\right )} a \cos \left (d x + c\right ) + 3 \,{\left (8 \, A + 14 \, B + 11 \, C\right )} a\right )} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 3 \,{\left ({\left (24 \, A + 14 \, B + 11 \, C\right )} a \cos \left (d x + c\right ) +{\left (24 \, A + 14 \, B + 11 \, C\right )} a\right )} \sqrt{a} \arctan \left (\frac{\sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a} \sin \left (d x + c\right )}\right )}{24 \,{\left (d \cos \left (d x + c\right ) + d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

1/24*((8*C*a*cos(d*x + c)^2 + 2*(6*B + 11*C)*a*cos(d*x + c) + 3*(8*A + 14*B + 11*C)*a)*sqrt(a*cos(d*x + c) + a
)*sqrt(cos(d*x + c))*sin(d*x + c) - 3*((24*A + 14*B + 11*C)*a*cos(d*x + c) + (24*A + 14*B + 11*C)*a)*sqrt(a)*a
rctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))))/(d*cos(d*x + c) + d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )}{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}{\sqrt{\cos \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^(3/2)/sqrt(cos(d*x + c)), x)